MonCV One

Standard Automated Perimetry
Goldmann Perimetry with video imaging

All in One
MonCV One proposes two sets of tests for static perimetry:

The STAT tests use a conventional distribution of test points with a uniform spacing.

The FAST tests (Fiber Adapted Static Tests) use an optimized distribution of test points according to the density of fibers and to the most frequent alterations of the retina and optic nerve.

Key point
- FAST tests provide more complete information in less time.

<table>
<thead>
<tr>
<th>Test</th>
<th>Background (cd/m²)</th>
<th>Stimulus size</th>
<th>Eccentricity (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT/FAST30</td>
<td>10</td>
<td>III</td>
<td>30</td>
</tr>
<tr>
<td>STAT/FAST24</td>
<td>10</td>
<td>III</td>
<td>24</td>
</tr>
<tr>
<td>STAT/FAST10</td>
<td>10</td>
<td>III</td>
<td>10</td>
</tr>
<tr>
<td>Fovea</td>
<td>10</td>
<td>III</td>
<td>fovea</td>
</tr>
<tr>
<td>FAST-60</td>
<td>10</td>
<td>III</td>
<td>60</td>
</tr>
<tr>
<td>Blue / Yellow</td>
<td>100</td>
<td>V</td>
<td>30</td>
</tr>
</tbody>
</table>

The test library includes STAT and FAST procedures covering eccentricities up to 10, 24, 30 and 60 degrees.

Tests for Blue / yellow perimetry (SWAP) are also provided as an option.

Advanced graphics for an easier interpretation

The advanced graphic technology of MonCvONE allows a precise description of the scotoma shape and localization.

Key points
- Accurate description of arcuate scotoma.
- Precise evaluation of the functional impact of deficits with test points at 2 and 5 degrees eccentricity.
Mixed Perimetry: the combination of Kinetic and Static Perimetry

Mixed perimetry combines the evaluation of the peripheral field with kinetic tests and the evaluation of the central field with static tests.

Key points
- Mixed perimetry gives a more complete evaluation of the visual field,
- Mixed perimetry saves time in severely affected visual fields.

<table>
<thead>
<tr>
<th>Background (cd/m²)</th>
<th>Stimulus size</th>
<th>Eccentricity (degrees)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIXED-30</td>
<td>10</td>
<td>III Periphery +30</td>
</tr>
<tr>
<td>MIXED-24</td>
<td>10</td>
<td>III Periphery +24</td>
</tr>
<tr>
<td>MIXED-12</td>
<td>10</td>
<td>III Periphery +12</td>
</tr>
</tbody>
</table>

Statistical analysis

This analysis provides:
- a map of deficits relative to normal, age corrected thresholds,
- a map of relative deficits obtained after subtraction of the diffuse component,
- global indexes.

Key point
- Comparison of the patient’s result with age corrected normal data.

Follow-up analysis

The follow-up analysis uses the set of results obtained from the patient to analyze the progression of the visual field. It includes a graph with the evolution of the mean deficit and a map indicating where visual field changes are occurring.

Key point
- The map of evolution indicates which parts of the field are changing and so allows to determine if the evolution is due to glaucoma, cataract or ARMD.
Goldmann Perimetry of the 21st century

Manual Perimetry

Manual perimetry is needed in a number of clinical situations:

- for patients who are not able to perform automated perimetry,
- for the control of abnormal results obtained with automated perimetry,
- for the evaluation of acute visual field loss.

Key points

- Interactive perimetry with direct mouse or stylus control,
- Automated quantification of isopters and scotoma surface area,
- Detailed evaluation of the macula obtained by zooming the central field,
- Fundus oriented perimetry performed in superposition with the image of the eye fundus.

Video imaging

MonCV eye tracker presents unique features:

- A high resolution camera with a large viewing field suitable for binocular exams and for testing difficult subjects (infants...),
- An automated measurement of the pupil size,
- The rejection of responses when the patient loses fixation or blinks,
- The possibility of video recording (with compression) during the entire exam and playback afterwards (*).

Key points

- The camera with the binocular viewing field
- The inclusion of extracts of the video in the exam report for documenting problems such as ptosis, nystagmus, lens misalignment...(*)

* Patent pending
Tests of visual aptitudes

Driver visual field test

Key points
- Complies with European Directive 2009/113/EC
- Binocular test
- Binocular fixation control
- Relative (12 dB) and absolute deficits for group 1 and group 2 drivers

Diplopia visual field test

Quantification of the binocular field of single vision (or fusion field)

Key points
- Binocular video control
- Automated functional score

Esterman visual field test

Key points
- Binocular test
- Binocular fixation control
- 85 static tests III4e
- Automated or manual “Goldmann” mode
- Automated Esterman score
Applications

Evaluation of ptosis
Documented need for blepharoplasty.

Key points
- Quantification of the functional visual field alteration,
- Report combining the visual field and video snapshots.

Cardinal positions of gaze

Key points
- Binocular video recording and playback
- Can be performed at different eccentricities and different levels of illumination.

Attraction Perimetry
One unique feature of MonCV is its ability to perform perimetry exams on infants (below the age of 7) and other non cooperative subjects.

The operator has a direct control of the stimulus presentation and can record the infant’s eye movement responses thanks to the high quality of the video.

Key points
- High quality video allows the detection of infants’ responses.
- Video playback synchronized with the test presentations allows the off line analysis of results and their control (*).

* Patent pending
Function-Structure comparison

This analysis allows the comparison of the visual field with the image of the eye fundus or OCT. The image is imported under a standard format (jpeg, bmp,...) and is automatically scaled to the visual field after clicking on the positions of the papilla and fovea.

Key point
- This analysis indicates if the functional deficit is related to the structural alteration,
- In manual mode, the exam can be realized on top of the eye fundus image.

Different versions

<table>
<thead>
<tr>
<th>Feature</th>
<th>SAP</th>
<th>PRO</th>
<th>CR</th>
<th>CR++</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photopic background (10 cd/m²)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Tests FAST60, FAST30, FAST24, FAST12, FOVEA</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Mixed perimetry (kinetic + static)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Binocular tests for drivers Group 1 and 2</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Binocular test for low vision (Esterman)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Large field lenses for correction of refraction</td>
<td>OPTION</td>
<td>OPTION</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Blue/Yellow perimetry</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Manual perimetry (interactive Goldmann)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Video imaging</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Attraction perimetry (young infants...)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Single vision test (diplopia test)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Programmable background (scotopic, mesopic photopic)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Dichroic filters user defined (4)</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Dark adaptometry</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Pupillometry</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Flash ERG and VEP, EOG</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
Specifications

- Hemispherical cupola with 30 cm radius
- Test projection up to 105 degrees of eccentricity (temporal)
 65 degrees (nasal), 60 degrees (up), 70 degrees (down)
- Background
 Default value = 10 cd/m² for white
 100 cd/m² for yellow
 Programmable from scotopic up to high photopic (600 cd/m²)
- Test color
 white, blue, red, possibility of 4 filters with user’s specs
- Test sizes
 Goldmann I, II, III, IV, V
- Dimensions: footprint=62x35cm height=74cm
- Weight: 23 kg (without PC, printer and electric table)
- Power supply: 110-240V, 3.6-1.8A, 50-60Hz

Key points

- Ultra wide field perimetry (105 degrees temporal)
- Scotopic and mesopic perimetry (option).

Computer networking

MonCV is controlled from a standard PC or tablet operating under Windows.

It can be connected to a computer network allowing the access to results from a work station and their exportation under PDF or DICOM formats.

Correction of refractive errors

MonCV is supplied, as an option, with a set a large field lenses (55 mm in diameter) suitable also for binocular exams.

Key point

- Large field lenses prevent peripheral field errors that result from the lens rim or lens misalignment.